C=(x−1)(x−3)(x2−4x+5)
C=(x2-4x+3)(x2−4x+5)
đặt x2-4x+3=t
⇒x2−4x+5= t+2 pttt:
C= t(t+2)
=t2+2t
=t2+2t +1-1
=(t+1)2-1 ≥-1 (do (t+1)2≥0)
vậy gtnn c=-1 khi t=-1 ⇔ x2-4x+3=-1 ⇔x=2
\(C=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(C=\left(x^2-4x+3\right)^2+2\left(x^2-4x+3\right)+1-1\)
\(C=\left(x^2-4x+3+1\right)^2-1\)
\(C=\left(x-2\right)^4-1\ge-1\)
\(\Rightarrow C_{min}=-1\) khi \(x=2\)