Violympic toán 9

ML

Tìm GTNN của biểu thức: D= \(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) trong đó x , y là số thực lớn hơn 1

LH
8 tháng 10 2019 lúc 22:28

\(D=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-x\right)}\)

=\(\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)

=\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(bđt svac-xơ)

Đặt x+y=a(a>2 do x,y>1)

=> \(D\ge\frac{a^2}{a-2}=\frac{\left(a^2-8a+16\right)+8\left(a-2\right)}{a-2}=\frac{\left(a-4\right)^2}{a-2}+8\ge8\)

Dấu "=" xảy ra <=> a=4 và x=y <=> x+y=4 và x=y <=> x=y=2

Vậy minD=8 <=>x=y=2

Bình luận (0)

Các câu hỏi tương tự
KS
Xem chi tiết
TA
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết