Violympic toán 8

LH

tìm GTNN của biểu thức:

A=\(\left|x-2019\right|+\left|x-2020\right|\)

NT
23 tháng 6 2019 lúc 16:15

\(A=\left|x-2019\right|+\left|x-2020\right|\)

\(=\left|x+\left(-2019\right)\right|+\left|2020-x\right|\)

Ta có :

\(\left\{{}\begin{matrix}\left|x+\left(-2019\right)\right|\ge x+\left(-2019\right)\\\left|2020-x\right|\ge2020-x\end{matrix}\right.\)\(=>A\ge x+\left(-2019\right)+2020-x\)

=>\(A\ge1\)

Dấu "=" xảy ra khi

\(\left\{{}\begin{matrix}x+\left(-2019\right)\ge0\\2020-x\ge0\end{matrix}\right.\)\(=>2019\le x\le2020\)

Vậy GTNN của A=1

Khi \(2019\le x\le2020\)

Bình luận (0)
H24
8 tháng 11 2019 lúc 12:52

\(A=\left|x-2019\right|+\left|x-2020\right|\)

\(A=\left|2019-x\right|+\left|x-2020\right|\ge\left|2019-x+x-2020\right|=\left|-1\right|=1\)

\(\Rightarrow A\ge1\)

Dấu '' = '' xảy ra

\(\)\(\Leftrightarrow\left\{{}\begin{matrix}2019-x\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow2019\le x\le2020\)

Vậy Min A = 1 \(\Leftrightarrow2019\le x\le2020\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
BB
Xem chi tiết
TH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
AS
Xem chi tiết
TT
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết