Phân thức đại số

LP

tìm GTNN của biểu thức: A = \(\frac{x^2}{4}+x-1\) ; B = \(\frac{x^2-2x+2}{x^2+2x+3}\) ; C = \(\frac{x^2-2x-1}{2x^2+4x+9}\)

NL
3 tháng 10 2020 lúc 17:04

\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)

\(A_{min}=-2\) khi \(x=-2\)

Với 2 câu B, C cần kiến thức lớp 9 để làm:

\(Bx^2+2Bx+3B=x^2-2x+2\)

\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)

\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)

\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)

\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)

\(2Cx^2+4Cx+9C=x^2-2x-1\)

\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)

\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)

\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)

\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PL
Xem chi tiết
TH
Xem chi tiết
TK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
NS
Xem chi tiết