\(lim\frac{\sqrt{2n.n^{\frac{1}{2}}.n^{\frac{1}{4}}}}{n+1}=\frac{\sqrt{2}.n^{\frac{7}{8}}}{n+1}=\frac{\sqrt{2}}{n^{\frac{1}{8}}+\frac{1}{n^{\frac{7}{8}}}}=\frac{\sqrt{2}}{\infty}=0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(lim\frac{\sqrt{2n.n^{\frac{1}{2}}.n^{\frac{1}{4}}}}{n+1}=\frac{\sqrt{2}.n^{\frac{7}{8}}}{n+1}=\frac{\sqrt{2}}{n^{\frac{1}{8}}+\frac{1}{n^{\frac{7}{8}}}}=\frac{\sqrt{2}}{\infty}=0\)
Tìm các giới hạn sau:
\(a,lim\left(\sqrt{4n^2+5n}-2n\right)\)
\(b,lim\left(\sqrt{2n+1}-\sqrt{n}\right)\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
Tính các giới hạn sau:
\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)
\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
tìm giới hạn của dãy số
1.\(\lim\limits_{n->\infty}\left(\sqrt[3]{n^3+n^2+n+1}-n\right)\)
2.\(\lim\limits_{n->\infty}\left(\sqrt{n^2+n}-\sqrt{n^2-n+1}\right)\)
3.tìm a,b để \(\lim\limits_{n->\infty}\left(\sqrt{an^2+bn+2}-2n\right)=2\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
tính giới hạn
lim\(\sqrt{4n^2+2n}-\sqrt[3]{n^3+2n-1}-n+4\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}\)
\(b,lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}\)
\(b,lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\)