A \(=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Vậy giá trị nhỏ nhất của A = 4 khi :
\(\left\{{}\begin{matrix}y-1=0\\x-y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=7\end{matrix}\right.\)
A =x2−2xy+6y2−12x+2y+45=x2−2xy+6y2−12x+2y+45
=x2+y2+36−2xy−12x+12y+5y2−10y+5+4=x2+y2+36−2xy−12x+12y+5y2−10y+5+4
=(x−y−6)2+5(y−1)2+4≥4=(x−y−6)2+5(y−1)2+4≥4
Vậy nên giá trị nhỏ nhất của A = 4 khi :
{y−1=0x−y−6=0⇔{y=1x=7