Phép nhân và phép chia các đa thức

HD

Tìm giá trị lớn nhất của biểu thức
9 - 9x2 + 2x - \(\dfrac{2}{9}\)

KS
30 tháng 5 2022 lúc 9:30

\(9-9x^2+2x-\dfrac{2}{9}\\ =-\left(9x^2-2x+\dfrac{1}{9}-\dfrac{80}{9}\right)\\ =-\left(3x+\dfrac{1}{3}\right)^2+\dfrac{80}{9}\le\dfrac{80}{9}\)

Dấu "=" xảy ra khi \(-\left(3x+\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow3x+\dfrac{1}{3}=0\\ \Leftrightarrow3x=-\dfrac{1}{3}\\ \Leftrightarrow x=-\dfrac{1}{9}\)

Vậy \(Max=\dfrac{80}{9}\Leftrightarrow x=-\dfrac{1}{9}\)

Bình luận (3)
QN
30 tháng 5 2022 lúc 10:13

9 - 9x2 + 2x - \(\dfrac{2}{9}\)
=\(\dfrac{80}{9}\)-[(3x)2-2x+(\(\dfrac{1}{3}\))2]
=\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2
Vì (3x-\(\dfrac{1}{3}\))2≥0 ⇒-(3x-\(\dfrac{1}{3}\))2≤0⇒\(\dfrac{80}{9}\)-(3x-\(\dfrac{1}{3}\))2\(\dfrac{80}{9}\)
Trường hợp dấu bằng xảy ra khi: (3x-\(\dfrac{1}{3}\))2=0⇒3x-\(\dfrac{1}{3}\)=0⇒3x=\(\dfrac{1}{3}\)⇒x=\(\dfrac{1}{9}\)
Vậy GTLN của biểu thức là \(\dfrac{80}{9}\) khi x=\(\dfrac{1}{9}\)

 

 
Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
KH
Xem chi tiết
NA
Xem chi tiết
VK
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết