Bài 5: Phép cộng các phân thức đại số

DT

Tìm giá trị lớn nhất:

B= (x2+10x+20):(x2+6x+9)

C= (3x2+9x+17):(3x2+9x+7)

AH
19 tháng 10 2018 lúc 21:01

\(B=\frac{x^2+10x+20}{x^2+6x+9}=\frac{(x^2+6x+9)+4(x+3)-1}{x^2+6x+9}\)

\(=1+\frac{4(x+3)}{x^2+6x+9}-\frac{1}{x^2+6x+9}=1+\frac{4(x+3)}{(x+3)^2}-\frac{1}{(x+3)^2}\)

\(=1+\frac{4}{(x+3)}-\frac{1}{(x+3)^2}\)

Đặt \(\frac{1}{x+3}=a\Rightarrow B=1+4a-a^2=5-(a^2-4a+4)\)

\(=5-(a-2)^2\leq 5\)

Vậy \(B_{\max}=5\Leftrightarrow a=2\Leftrightarrow x=-\frac{5}{2}\)

Bình luận (0)
AH
19 tháng 10 2018 lúc 21:35

\(C=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)

Có: \(3x^2+9x+7=3(x^2+3x+\frac{9}{4})+\frac{1}{4}=3(x+\frac{3}{2})^2+\frac{1}{4}\geq \frac{1}{4}\)

\(\Rightarrow \frac{10}{3x^2+9x+7}\leq \frac{10}{\frac{1}{4}}=40\)

\(\Rightarrow C\leq 41\)

Vậy \(C_{\max}=41\Leftrightarrow x=\frac{-3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
SK
Xem chi tiết
BC
Xem chi tiết
NT
Xem chi tiết
DT
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết