Ta có: \(2002\subset11=>2004-2\subset11\)
\(=>2004\equiv2\left(mod11\right)\)
\(=>2004^{2004}=2^{2004}\left(mod11\right)\) Mà \(2^{10}\equiv1=>2004^{2004}=2^4.\left(2^{10}\right)^{200}\equiv24\equiv5\left(mod11\right)\)
Vậy \(2004^{2004}chia11\)dư 5