§2. Bất phương trình và hệ bất phương trình một ẩn

TB

Tìm điều kiện của tham số m để phương trình mx2 + (m - 1)x + 3 - 4m = 0 có hai nghiệm phân biệt x1, x2 thoả mãn x1 < 2 < x2

MY
8 tháng 3 2022 lúc 7:25

\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)

\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)

\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)

Bình luận (0)

Các câu hỏi tương tự
FA
Xem chi tiết
NN
Xem chi tiết
KD
Xem chi tiết
H24
Xem chi tiết
FA
Xem chi tiết
LP
Xem chi tiết
HN
Xem chi tiết
KS
Xem chi tiết
DK
Xem chi tiết