Ôn tập toán 7

VK

Tìm đa thức bậc hai biết \(f\left(x\right)-f\left(x-1\right)=x\)

Từ đó áp dụng tính tổng S= \(1+2+3+...+n\)

AH
2 tháng 2 2020 lúc 20:04

Lời giải:

Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$

Cho $x=0$:

$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$

Cho $x=1$:

$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$

Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$

Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.

Áp dụng tính tổng:

$f(1)-f(0)=1$

$f(2)-f(1)=2$

$f(3)-f(2)=3$

....

$f(n)-f(n-1)=n$

Cộng theo vế:

$\Rightarrow f(n)-f(0)=1+2+3+..+n$

$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$

$\Leftrightarrow \frac{n(n+1)}{2}=S$

Bình luận (0)
 Khách vãng lai đã xóa
AH
28 tháng 2 2020 lúc 16:07

Lời giải:

Giả sử đa thức cần tìm là $f(x)=ax^2+bx+c$

Cho $x=0$:

$f(0)-f(-1)=0\Leftrightarrow c-(a-b+c)=0\Leftrightarrow -a+b=0(1)$

Cho $x=1$:

$f(1)-f(0)=1\Leftrightarrow a+b+c-c=1\Leftrightarrow a+b=1(2)$

Từ $(1);(2)\Rightarrow a=b=\frac{1}{2}$

Vậy $f(x)=\frac{1}{2}x^2+\frac{1}{2}x+c$ với $c$ là số thực bất kỳ.

Áp dụng tính tổng:

$f(1)-f(0)=1$

$f(2)-f(1)=2$

$f(3)-f(2)=3$

....

$f(n)-f(n-1)=n$

Cộng theo vế:

$\Rightarrow f(n)-f(0)=1+2+3+..+n$

$\Leftrightarrow \frac{1}{2}n^2+\frac{1}{2}n+c-c=S$

$\Leftrightarrow \frac{n(n+1)}{2}=S$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HA
Xem chi tiết
AV
Xem chi tiết
QS
Xem chi tiết
AH
Xem chi tiết
CD
Xem chi tiết
XT
Xem chi tiết
JA
Xem chi tiết
SP
Xem chi tiết
BL
Xem chi tiết