Áp dụng BĐT \(ab\le\frac{a^2+b^2}{2}\)
\(x\left(1-y^2\right)\le\frac{1}{2}\left(x^2+1-y^2\right)\)
\(y\sqrt{2-z^2}\le\frac{1}{2}\left(y^2+2-z^2\right)\)
\(z\sqrt{3-x^2}\le\frac{1}{2}\left(z^2+3-x^2\right)\)
Cộng vế với vế:
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{1}{2}\left(1+2+3\right)=3\)
Do dấu "=" xảy ra nên:
\(\left\{{}\begin{matrix}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=\sqrt{2}\end{matrix}\right.\)