Chương 4: GIỚI HẠN

H24

tìm các số thực a,b thoả mãn \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-bx\right)=2\)

NL
22 tháng 3 2022 lúc 23:42

Giới hạn đã cho hữu hạn khi và chỉ khi \(b=1\)

Khi đó: 

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-ax+1}{\sqrt{x^2-ax+1}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-a+\dfrac{1}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{1}{x^2}}+1}=-\dfrac{a}{2}\)

\(\Rightarrow-\dfrac{a}{2}=2\Rightarrow a=-4\)

Vậy \(\left(a;b\right)=\left(-4;1\right)\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết