Violympic toán 9

AJ

Tìm các số nguyên x,y,z thỏa mãn:

\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}\)

KK
22 tháng 8 2019 lúc 11:23

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\) thì ta suy ra được :

\(x-\frac{1}{y}=\frac{k}{6}\); \(y-\frac{1}{z}=\frac{k}{3}\) ; \(z-\frac{1}{x}=\frac{k}{2}\)

Vậy ta có \(\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\frac{k^3}{36}\Rightarrow\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=\frac{k^3}{36}\)

\(x-\frac{1}{y}=\frac{k}{6};y-\frac{1}{z}=\frac{k}{3};z-\frac{1}{x}=\frac{k}{2};xyz-\frac{1}{xyz}=k\)

\(\Rightarrow k-\frac{k}{6}-\frac{k}{3}-\frac{k}{2}=\frac{k^3}{36}\Rightarrow k=0\)

Vậy ta suy ra được\(\left\{{}\begin{matrix}xy=1\\yz=1\\zx=1\\xyz=1\end{matrix}\right.\) nên ta có 4 cặp số nguyên: (1;1;1);(-1;-1;1);(1;-1;-1);(-1;1;-1).

Bình luận (0)
KK
22 tháng 8 2019 lúc 11:24

Hi vọng bạn thấy hay!

Bình luận (0)

Các câu hỏi tương tự
AG
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
LQ
Xem chi tiết
NM
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết