Violympic toán 9

TT

Tìm các số nguyên dương x,y,z thõa mãn : \(3x^2-18y^2+2z^2+3y^2z^2-18x=27\)

TQ
8 tháng 1 2019 lúc 18:27

\(3x^2-18y^2+2z^2+3y^2z^2-18x=27\Leftrightarrow3\left(x-3\right)^2+2z^2-18y^2+3y^2z^2=54\)(*)

Để phương trình có nghiệm nguyên thì \(z^2⋮3\Leftrightarrow z⋮3\Leftrightarrow z^2⋮9\Leftrightarrow z^2\ge9\)

Ta có (*)\(\Leftrightarrow3\left(x-3\right)^2+2z^2+3y^2\left(z^2-6\right)=54\Rightarrow54=3\left(x-3\right)^2+2z^2+3y^2\left(z^2-6\right)\ge3\left(x-3\right)^2+2.9+3y^2\Leftrightarrow3\left(x-3\right)^2+3y^2\le12\Leftrightarrow y^2\le4\Leftrightarrow y^2=1\) hoặc y2=4

_ y2=1\(\Leftrightarrow y=1\)

Vậy (*) có dạng \(3\left(x-3\right)^2+5z^2=72\Leftrightarrow5z^2\le72\Leftrightarrow z^2=9\Leftrightarrow z=3\Leftrightarrow x=6\)_y2=4\(\Leftrightarrow y=2\)

Vậy (*) có dạng \(3\left(x-3\right)^2+14z^2=126\Leftrightarrow14z^2\le126\Leftrightarrow z^2\le9\Leftrightarrow\)\(z=3\Leftrightarrow x=3\)

Vậy (x;y;z)={(3;2;3);(6;1;3)}

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết
AD
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
KA
Xem chi tiết
VD
Xem chi tiết