a) tìm số tự nhiên x và số nguyên y thỏa mãn: \(x^2y+2xy+x^2-2018x+y=-1\)
b) giải hệ phương trình \(\left\{{}\begin{matrix}x^2-2y^2+xy=2y-2x\\\sqrt{x+2y+1}+\sqrt{x^2+y+2}=4\end{matrix}\right.\)
Tìm Min, Max :
a)A = x + y + 1 biết \(x^2+2xy+3\left(x+y\right)+2y^2+2=0\)
b)B = x + y + 1 biết \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
c)C = \(x^2+y^2\) biết \(x^2\left(x^2+y^2-3\right)+\left(y^2-4\right)^2=1\)
d)D = x + y biết \(x^2+2y^2+2xy+3x+3y-4=0\)
e)E = \(x^2+y^2\) biết \(\left(x^2-y^2+1\right)^2+4x^2y^2-x^2-y^2=0\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{matrix}\right.\)
Tìm nghiệm nguyên của phương trình: \(x^2-25=y.\left(y+6\right)\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=m^2+3\\x-y=-4\end{matrix}\right.\)(m là tham số). CMR: Với mọi \(m\ne-1\), hệ phương trình có nghiệm duy nhất (x;y). Khi đó tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2-2y+10\)
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Số nghiệm của hệ phương trình \(\left\{{}\begin{matrix}\left(2x-\left|y\right|-1\right)\left(x+2y-1\right)=0\\\left(2x-\left|y\right|-2\right)\left(x+2y-3\right)=0\end{matrix}\right.\)
Giaỉ hệ phương trình
1) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-x^2\left(4y-3\right)+y^2=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^3-2y^3-x-4y=0\\13x^2-41xy+21y^2+9=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+2y^2=6\\2x^2+y^2+1=2xy\end{matrix}\right.\)