Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
cho phương trình x2-<m+5>x+3m+6
a, chứng minh phương trình luôn có 2 nghiệm với mọi m
b, tìm m để 2 nghiệm x1 x2 là độ dài 2 cạnh góc vuông của tam giác biết cạnh huyền bằng 5
Cho phương trình \(x^2+\left(m-1\right)x-m=0\). Tìm m để phương trình có hai nghiệm \(x_1,x_2\)là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh Huyền bằng \(\sqrt{5}\)
Giúp mình nhé
cho phương trình: x2- 2mx + 2 m - 1= 0 .tìm các giá trị của tham số m để phương trình có 2 nghiệm x1; x2 thỏa mãn:
a)\(\left|x_1-x_2\right|=\sqrt{15}\)
b)x12=x2-4
c)Là độ dài hai cạnh của một tam giác vuông có độ dài cạnh huyền bằng 3
d)Nghiệm này gấp 3 lần nghiệm kia
GIÚP MK VS,MK CẦN GẤP!!!!!!!!!!!!
Tìm m để pt \(x^2-mx+m^2-m-3=0\) có 2 nghiệm là độ dài 2 cạnh của tam giác vuông ,mà cạnh huyền bằng 2
\(\text{Cho phương trình: x^2-2(m+1)x+3m-3=0 ( x là ẩn, m là tham số)}\)
\(\text{Tìm m để phương trình có hai nghiệm x_1,x_2 phân biệt sao cho}\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\)
Giải hộ mình với ạ
Cho phương trình:\(x^2\)\(-\left(m+1\right)\)\(x\)\(-2=0\) (với m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1\),\(x_2\) sao cho:
\(\left(1-\dfrac{2}{x_1+1}\right)^2\)\(+\left(1-\dfrac{2}{x_2+1}\right)^2=2\)
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho phương trình : x\(^2\) + 2x -3 - m = 0
Chứng minh phương trình trên có hai nghiệm x\(_1\),x\(_2\) với mọi m. Tìm m để \(\dfrac{x_1}{x_2}\) - \(\dfrac{x_2}{x_1}\) = -\(\dfrac{8}{3}\)
Giải giúp mình với ạ !!!