Ôn tập toán 7

HA

Tìm ba số a,b,c biết a+1,b+2,c+3 tỉ lệ nghịch với 3;8;12 và a+b+c=20

NT
19 tháng 12 2016 lúc 11:41

Giải:
Ta có: \(3\left(a+1\right)=8\left(b+2\right)=12\left(c+3\right)\)

\(\Rightarrow\frac{3\left(a+1\right)}{24}=\frac{8\left(b+2\right)}{24}=\frac{12\left(c+3\right)}{24}\)

\(\Rightarrow\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}=\frac{a+1+b+2+c+3}{8+3+2}=\frac{\left(a+b+c\right)+\left(1+2+3\right)}{13}=\frac{23+6}{13}=2\)

+) \(\frac{a+1}{8}=2\Rightarrow a=15\)

+) \(\frac{b+2}{3}=2\Rightarrow b=4\)

+) \(\frac{c+3}{2}=2\Rightarrow c=1\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(15;4;1\right)\)

Bình luận (0)
TQ
19 tháng 12 2016 lúc 11:42

Theo đề ta có:

3.(a+1) = 8.(b+2) = 12.(c+3) => \(\frac{3.\left(a+1\right)}{24}=\frac{8.\left(b+2\right)}{24}=\frac{12.\left(c+3\right)}{24}\)

=> \(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)

Theo tính chất của dãy tỉ số bằng nhau. Ta có:

\(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)\(=\frac{a+1+b+2+c+3}{8+3+2}=\frac{a+b+c+1+2+3}{13}=\frac{20+6}{13}=\frac{26}{13}=2\)

=> \(\frac{a+1}{8}=2\) => \(a+1=16\) => \(a=15\)

=> \(\frac{b+2}{3}=2\) => \(b+2=6\) => \(b=4\)

=> \(\frac{c+3}{2}=2\) => \(c+3=4\) => \(c=1\)

Vậy \(a=15\)

\(b=4\)

\(c=1\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
SS
Xem chi tiết
NC
Xem chi tiết
DA
Xem chi tiết
BV
Xem chi tiết
QN
Xem chi tiết
NA
Xem chi tiết
DN
Xem chi tiết
NP
Xem chi tiết