Ôn tập toán 7

NP

Câu 1:Tìm 2 số x và y,biết:

a,  x/3 =y/7 và x+y = 20                              b,x/5 = y/2 và x-y = 6

Câu 2:Tìm x trong các tỉ lệ thức sau:

a, x/7 = 18/14 ;       b,  6:x  =1 và 3/4 :5;         c,  5.7 :0.35+(-x) :0.45

Câu 3:Tìm các số x,y,z biết :

x/2 = y/4 = z/6 và x-y+z = 8

Câu 4:Chứng minh rằng từ tỉ lệ thức a/b = c/d (a hk thuộc b,c hk thuộc d) ta có thể suy ra tỉ lệ  thức  a+b/a-b  =  c+d/c-d

LF
28 tháng 9 2016 lúc 18:17

Câu 1:

a)Áp dụng tc dãy tỉ:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)

b)Áp dụng tc dãy tỉ:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)

Câu 2:

a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)

\(\Rightarrow14x=126\)

\(\Rightarrow x=9\)

b và c đề có vấn đề

Bình luận (1)
NT
28 tháng 9 2016 lúc 18:55

Câu 1:

a) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)

+) \(\frac{x}{3}=2\Rightarrow x=6\)

+) \(\frac{y}{7}=2\Rightarrow y=14\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)

+) \(\frac{x}{5}=2\Rightarrow x=10\)

+) \(\frac{y}{2}=2\Rightarrow y=4\)

Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

+) \(\frac{x}{2}=2\Rightarrow x=4\)

+) \(\frac{y}{4}=2\Rightarrow y=8\)

+) \(\frac{z}{6}=2\Rightarrow z=12\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)

Câu 4:

Giải: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: 

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
LF
28 tháng 9 2016 lúc 18:19

Câu 3:

Áp dụng tc dãy tỉ:

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

\(\Rightarrow\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{4}=2\Rightarrow y=8\\\frac{z}{6}=2\Rightarrow z=12\end{cases}\)

Câu 4

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

Từ (1) và (2) ->Đpcm

Bình luận (2)
LP
29 tháng 9 2016 lúc 10:32

Câu4

Đặt a/b=c/d=k→a=bk

                             c=dk

Ta có:a+b/a-b=bk+b/bk-b=b.(k+1)/b.(k-1)=k+1/k-1  (1)

           c+d/c-d=dk+d/dk-d=d.(k+1)/d.(k-1)=k+1/k-1  (2)

Từ (1) và (2) =>a+b/a-b=c+d/c-d

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
SS
Xem chi tiết
NN
Xem chi tiết
LL
Xem chi tiết
ND
Xem chi tiết
TN
Xem chi tiết
NC
Xem chi tiết
ND
Xem chi tiết
NP
Xem chi tiết