Chương 4: GIỚI HẠN

AA

Tìm a,b để:

1, Lim(\(\sqrt{4n^2+2n+1}\)-an+b)=1

2, Lim( \(\sqrt{n^2+6n-1}-\sqrt{an^2+bn+2}\))=4

NL
13 tháng 1 2024 lúc 22:51

1.

\(\lim\left(\sqrt{4n^2+2n+1}-\left(an-b\right)\right)=\lim\dfrac{4n^2+2n+1-\left(an-b\right)^2}{\sqrt{4n^2+2n+1}+an-b}\)

\(=\lim\dfrac{\left(4-a^2\right)n^2+\left(2+ab\right)n+1-b^2}{\sqrt{4n^2+2n+1}+an-b}\)

\(=\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}\)

- Nếu \(4-a^2\ne0\Rightarrow\) giới hạn đã cho đạt giá trị dương vô cực \(\Rightarrow\) ktm

\(\Rightarrow4-a^2=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)

- Với \(a=-2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=-\infty\) (ktm)

- Với \(a=2\Rightarrow\lim\dfrac{\left(4-a^2\right)n+2+ab+\dfrac{1-b^2}{n}}{\sqrt{4+\dfrac{2}{n}+\dfrac{1}{n^2}}+a-\dfrac{b}{n}}=\dfrac{2+2b}{4}\)

\(\Rightarrow\dfrac{b+1}{2}=1\Rightarrow b=1\)

Vậy \(a=2;b=1\)

Câu 2 làm tương tự

Bình luận (1)

Các câu hỏi tương tự
NV
Xem chi tiết
CC
Xem chi tiết
TA
Xem chi tiết
BB
Xem chi tiết
LN
Xem chi tiết
CC
Xem chi tiết
NS
Xem chi tiết
NT
Xem chi tiết
QA
Xem chi tiết