Cho hệ phương trình \(\hept{\begin{cases}ax+y=b\\x+ay=c^2+c\end{cases}}\)
với a,b,c là các tham số. Tìm điều kiện của b
để với mọi a luôn tìm được c sao cho hệ
phương trình có nghiệm
Tìm m để hệ sau có nghiệm duy nhất
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\)
\(\begin{cases} (2m+1)x-3y=3m-2\\(m+3)x-(m+1)y=2m\end{cases}\)Tìm m để hệ có nghiệm duy nhất(x,y) sao cho \(x^2+3y^2\)Min
Xác định giá trị âm của m để hệ phương trình:
\(\hept{\begin{cases}x^2y+m=y^3+xy\\xy^2+m^3=x^3+yx\end{cases}}\)có nghiệm duy nhất
Tìm m để hệ phương trình có nghiệm :
\(\begin{cases}x-y+m=0\left(1\right)\\y+\sqrt{xy}=2\left(2\right)\end{cases}\)
Tìm m để hệ sau có 2 nghiệm phân biệt
\(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)
Giải và biện luận hệ phương trình
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\)
cho hệ tham số a: \(\begin{cases}x^2-y^2+a\left(x+y\right)=x-y+a\\x^2+y^2+xy=3\end{cases}\)
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)