Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TN

Tìm m để hệ sau có nghiệm duy nhất

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\)

NN
26 tháng 2 2016 lúc 11:34

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)

\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)

Mà  \(x^2-5x+4<0\)  (3) có tập nghiệm T=(1;4)

nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)

- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T

- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)

              + Nếu \(\Delta=0\)  hay \(m=\frac{13}{4}\)  thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T

              +  Nếu \(\Delta>0\)  hay \(m<\frac{13}{4}\)  thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :

                                 \(x_1\)  \(\le\)1 < \(x_2\)  < 4  (a)

                             hoặc

                                1< \(x_1\)  <4  \(\le\)   \(x_2\)    (b)

                           # Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)

                            # Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)

Vậy ta phải có 

                                     \(x_1\)  <1 < \(x_2\)  < 4 

                               hoặc 

                                     1< \(x_1\)  <4  <   \(x_2\)  

\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)

\(\Leftrightarrow\) (m+3)(16m-3) <0

\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\)  Thỏa mãn điều kiện \(\Delta>0\)

Tóm lại -3<m<\(\frac{3}{16}\)  là các giá trị cần tìm

 

Bình luận (0)

Các câu hỏi tương tự
BH
Xem chi tiết
NU
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
CN
Xem chi tiết
PA
Xem chi tiết
MD
Xem chi tiết
PA
Xem chi tiết
AS
Xem chi tiết