Bài 5: Giải bài toán bằng cách lập hệ phương trình

NH

tìm 1 số tự nhiên có 2 chữ số,biết rằng chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị và nếu đổi chỗ 2 chữ số cho nhau thì đc số mới bằng \(\dfrac{17}{5}\) số ban đầu

NC
4 tháng 2 2021 lúc 16:52

Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:

Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)

Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: 

\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:

\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b 

Vậy ko tồn tại số tự nhiên thỏa mãn đề bài 

Bình luận (0)

Các câu hỏi tương tự
MS
Xem chi tiết
WJ
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
MN
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết