\(tan10^0.tan80^0.tan20^0.tan70^0.tan30.tan60.tan40.tan50\)
\(=tan10.tan\left(90-10\right).tan20.tan\left(90-20\right).tan30.tan\left(90-30\right).tan40.tan\left(90-40\right)\)
\(=tan10.cot10.tan20.cot20.tan30.cot30.tan40.cot40\)
\(=1.1.1.1=1\)
\(tan10^0.tan80^0.tan20^0.tan70^0.tan30.tan60.tan40.tan50\)
\(=tan10.tan\left(90-10\right).tan20.tan\left(90-20\right).tan30.tan\left(90-30\right).tan40.tan\left(90-40\right)\)
\(=tan10.cot10.tan20.cot20.tan30.cot30.tan40.cot40\)
\(=1.1.1.1=1\)
chứng minh các đẳng thức sau
a) \(\tan^2x-\sin^2x=\tan^2x.\sin^2x\)
b) \(\tan x+\cot x=\frac{1}{\sin x.\cot x}\)
c) \(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
d) \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)
e) \(\left(1-\frac{1}{\cos x}\right)\left(1+\frac{1}{\cos x}\right)+\tan^2x=0\)
Giả sử A = tan \(x\) . tan (\(\dfrac{\pi}{3}-x\)) . tan \(\left(\dfrac{\pi}{3}+x\right)\) được rút gọn thành A = tan nx khi đó n bằng bao nhiêu
Cho sinx + siny = 2sin(x+y) vs x + y \(\ne\) k2\(\pi\), k thuộc Z. CMR:
\(tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)
Cho 2sin(x + y) = sinx + siny
CMR : \(tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\) với x,y thích hợp với đkxđ của đề bài
Tính giá trị biểu thức:
\(P=\left[Tan\dfrac{17\Pi}{4}+Tan\left(\dfrac{7\Pi}{2}-x\right)\right]^2+\left[Cot\dfrac{13\Pi}{4}+Cot\left(7\Pi-x\right)\right]^2\)
Chứng minh:
\(tan^2\left(x-a\right)+tan^2\left(x+a\right)=\frac{2\left(sin^22a+sin^22x\right)}{\left(cos2x+cos2a\right)^2}\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)
Rút gọn biểu thức sau:\(A=\left[tan\frac{17\pi}{4}+tan\left(\frac{7\pi}{2}-x\right)\right]^2+\left[cot\frac{17\pi}{4}+cot\left(7\pi\right)-x\right]^2\)