Đặt AP=x suy ra BP=60-x.Ta có phương trình
xtg\(20^0\)=(60-x)tg\(30^0\)
Đ/s:AP ≈36,801cm;BP=23,119cm;CP=13,396cm
Tham khảo nha
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đặt AP=x suy ra BP=60-x.Ta có phương trình
xtg\(20^0\)=(60-x)tg\(30^0\)
Đ/s:AP ≈36,801cm;BP=23,119cm;CP=13,396cm
Tham khảo nha
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.
Cho \(\Delta ABC\) vuông tại B có \(\widehat{C}=60^0\),AC = 6 cm
a) Trên tia đối của tia CB lấy điểm N sao cho CN = AC. C/m \(\dfrac{CB}{CN}=\dfrac{AB}{AN}\)
b) Đường thẳng song song với đường phân giác của \(\widehat{ACN}\) kẻ từ B cắt AN tại H. C/m \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BN^2}\)
Cho tam giác ABC vuông tại C có \(\widehat{B}=37^0\). Gọi I là giao điểm của cạnh BC với đường trung trực của AB. Hãy tính AB, AC nếu biết BI = 20
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho tam giác ABC vuông tại A có \(\widehat{B}\) = \(60^0\), BC = 6cm.
a) Tính AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất)
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC
c) Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm, BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc \(\widehat{B},\widehat{C}\) và đường cao AH của tam giác
b) Tìm tập hợp các điểm M sao cho \(S_{ABC}=S_{BMC}\)
Cho tam giác ABC có AB = 6 cm, AC = 4,5 cm, BC = 7,5 cm
a) Chứng minh tam giác ABC vuông tại A. Tính các góc \(\widehat{B},\widehat{C}\) và đường cao AH của tam giác
b) Tìm tập hợp các điểm M sao cho \(S_{ABC}=S_{BMC}\)
Cho tam giác ABC vuông tại B. Giải tam giác ABC, biết rằng:
a) \(\widehat{A}\) = \(40^0\), AC = 8cm
b) cotC = \(\dfrac{1}{\sqrt{3}}\); AB = 5cm