Dựng đường tròn ngoại tiếp tâm O. Gọi AD là đường cao, kéo dài AD cắt đường tròn ngoại tiếp tại H', dễ dàng CM được là H' và H đối xứng với nhau qua BC →→ CH'=CH=30; đặt x = DH' = DH
Tam giác ACH' vuông tại C →→ H'C2 = H'D . H'A →→ 900 = x . H'A (*)
* ) Xét trường hợp góc A nhọn, khi đó H'A = AH + HD + DH' = AH + 2x = 14 + 2x (*)
→→ 900 = x ( 14 + 2x ) →→ 2x2 + 14x - 900 = 0 . Nghiệm dương của phương trình này là x = 18 ( loại nghiệm âm x = -25)
→→ AD= AH + x= 14 + 18 =32 cm
* ) Xét trường hợp A là góc tù : khi đó H'A = H'H - AH = 2 . HD - AH = 2x - 14 (*)
→→ 900 = x . ( 2x - 14 ) →→ 2x2 - 14x - 900 = 0 . Nghiệm dương của phương trình này là x = 25
AD = DH - AH = 25 - 14 = 11 cm