Giả sử \(M{F_1} > M{F_2}\), ta có:
\(\left| {M{F_1} - M{F_2}} \right| = M{F_1} - M{F_2} = M{F_1} + {F_1}{F_2} - \left( {M{F_2} + {F_2}{F_1}} \right)\)
Mà \(M{F_2} + {F_2}{F_1}> M{F_1} \Rightarrow \left| {M{F_1} - M{F_2}} \right| < M{F_1} + {F_1}{F_2} - M{F_1} = {F_1}{F_2}\)
Hay \(2a < 2c \Leftrightarrow a < c\)