mình hỏi cũng lâu rồi nhưng chẳng có bạn nào trả lời cả
mong các bạn giúp đỡ
mình hỏi cũng lâu rồi nhưng chẳng có bạn nào trả lời cả
mong các bạn giúp đỡ
Ta có : a + b + c =3 và (a+b)(b+c)(c+a)=8abc
CMR : a = b= c
Cho a, b, c là độ dài 3 cạnh của tam giác và (a+b)(b+c)(c+a)=8abc. chứng minh rằng am giác đã cho là tam giác đều
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a, b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a,b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho a,b,c là các số nguyên khác nhau đôi một. CMR biểu thức sau có giá trị là 1 số nguyên: \(P=\dfrac{a^3}{\left(a-b\right).\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right).\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right).\left(c-b\right)}\)
Bài 1: a, b, c là 3 cạnh của tam giác. CMR:
\(\dfrac{a^2}{b+c-a}+\dfrac{b^2}{c+a-b}+\dfrac{c^2}{a+b-c}\ge a+b+c\)
Bài 2: a, b là số dương. CMR:
\(ab+\dfrac{a}{b}+\dfrac{b}{a}\ge a+b+1\)
Bài 3: a,b,c>0 thỏa mãn: (a+c)(b+c)=1. CMR:
\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(a+c\right)^2}+\dfrac{1}{\left(b+c\right)^2}\ge4\)
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
cho 1/a+1/b+1/c=1/a+b+c cmr 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3