Violympic toán 8

LT

cho 1/a+1/b+1/c=1/a+b+c cmr 1/a^3+1/b^3+1/c^3=1/a^3+b^3+c^3

AH
1 tháng 12 2019 lúc 16:56

Lời giải:
Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)

\(\Leftrightarrow (a+b)\left[\frac{1}{ab}+\frac{1}{c(a+b+c)}\right]=0\)

\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)

Không mất tổng quát giả sử $a+b=0$

$\Rightarrow$

$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{(-b)^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}$

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{(-b)^3+b^3+c^3}=\frac{1}{c^3}\)

\(\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
PH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
PH
Xem chi tiết
VT
Xem chi tiết
BT
Xem chi tiết
TT
Xem chi tiết
LS
Xem chi tiết