Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR nếu : \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)
thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
cho \(a=\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}\) chứng minh rằng \(\sqrt[3]{a^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)
Chứng minh nếu \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\) thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
chúng minh rằng nếu : \(\sqrt{x^2+\sqrt[3]{x^2y^4}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\) thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Giải phương trình :
a,\(13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
b,\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
c,\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
d,\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
Các số thực x, y, a thỏa mãn:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
Chứng minh đẳng thức: \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)