Chương I - Căn bậc hai. Căn bậc ba

NY

\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

PL
25 tháng 6 2018 lúc 10:34

Bài này không sai đề , tớ làm lại cho :

\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}=\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}-\sqrt{45+2.3\sqrt{5}.2\sqrt{2}+8}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}=\text{ |}2\sqrt{2}-\sqrt{5}\text{ |}-\text{ |}3\sqrt{5}+2\sqrt{2}\text{ |}=4\sqrt{2}-4\sqrt{5}\)

Bình luận (0)
HH
25 tháng 6 2018 lúc 10:21

Đề này mình làm không ra nên mình sẽ sửa đề.

Giải:

\(\sqrt{14-\sqrt{160}}-\sqrt{49+4\sqrt{90}}\)

\(=\sqrt{14-4\sqrt{10}}-\sqrt{49+12\sqrt{10}}\)

\(=\sqrt{10-4\sqrt{10}+4}-\sqrt{40+12\sqrt{10}+9}\)

\(=\sqrt{\left(\sqrt{10}\right)^2-2.\sqrt{10}.2+2^2}-\sqrt{\left(2\sqrt{10}\right)^2+2.2\sqrt{10}.3+3^2}\)

\(=\sqrt{\left(\sqrt{10}-2\right)^2}-\sqrt{\left(2\sqrt{10}+3\right)^2}\)

\(=\sqrt{10}-2-\left(2\sqrt{10}+3\right)\)

\(=\sqrt{10}-2-2\sqrt{10}-3\)

\(=-\sqrt{10}-5\)

Vậy ...

Nếu sai mong bạn thông cảm

Bình luận (0)

Các câu hỏi tương tự
EN
Xem chi tiết
DT
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
HT
Xem chi tiết
LD
Xem chi tiết
PD
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết