Chương I - Căn bậc hai. Căn bậc ba

TD

giai giups nhanh nha,RUT GON

A=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

B=\(\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}\)

C=\(\sqrt{46+\sqrt{6\sqrt{5}}}-\sqrt{29-12\sqrt{5}}\)

D=\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

N
4 tháng 7 2017 lúc 21:12

* \(\sqrt{2}\)A = \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}=\sqrt{7}-1-\left(\sqrt{7}+1\right)+\sqrt{14}=\sqrt{14}-2\)

=> A = \(\sqrt{7}-\sqrt{2}\)

* B là 6,5 hay 6*5 vậy bạn

nếu 6,5 thì : B cũng nhân \(\sqrt{2}\) biểu thức trở thành

\(\sqrt{2}B=\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}+4\sqrt{3}=\sqrt{\left(1+\sqrt{12}\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}+4\sqrt{3}=1+\sqrt{12}+\sqrt{12}-1+4\sqrt{3}=4\sqrt{3}+4\sqrt{3}=8\sqrt{3}\)

=> B = \(\dfrac{8\sqrt{3}}{\sqrt{2}}=4\sqrt{6}\)

nếu 6*5 thì : bạn tách hai căn đầu thành một biểu thức rồi bình phương lên rồi giải , sau đó trục căn , biểu thức luôn dương nhé , mấy bài này nếu không thể tách thì làm cách này cũng được

* C thì mik chỉ bít pt được nhiu đây thôi , bạn thông cảm nhé\(\sqrt{29-6\sqrt{20}}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}+3=2\sqrt{5}-3\)

* D = \(\sqrt{13-2\cdot2\sqrt{2}\cdot\sqrt{5}}-\sqrt{53+2\cdot2\sqrt{2}\cdot3\sqrt{5}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}=-4\sqrt{5}\)

Bình luận (2)
MD
4 tháng 7 2017 lúc 21:29

Câu C có sai đề ko? Tui sửa đây!

Ta có: \(C=\sqrt{46+6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

=> \(C=\sqrt{45+2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\)

=> \(C=\sqrt{\left(3\sqrt{5}+1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

=> \(C=\left|3\sqrt{5}+1\right|-\left|2\sqrt{5}-3\right|\)

=> \(C=3\sqrt{5}+1-2\sqrt{5}+3=4+\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
ST
Xem chi tiết
BG
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
TM
Xem chi tiết
PA
Xem chi tiết