Ôn tập cuối năm phần số học

NA

So sánh: \(\sqrt{1969}\)+\(\sqrt{1971}\) và 2\(\sqrt{1970}\)

HV
23 tháng 4 2017 lúc 20:36

\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)

Bình luận (0)
N2
10 tháng 8 2017 lúc 21:41

So sánh:\(\sqrt{1969}+\sqrt{1971}\)\(2\sqrt{1970}\)

Ko bt bn giả ra chưa nhưng mk sẽ giải thử:

Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:

\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)

\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)

Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)

(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)

\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
KK
Xem chi tiết
TV
Xem chi tiết
NN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết