Violympic toán 6

NS

so sánh

A=\(\frac{2011+2012}{2012+2013}\) và B=\(\frac{2011}{2012}+\frac{2012}{2013}\)

BT
24 tháng 3 2019 lúc 17:55

Ta có :

A=\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\left(1\right)\)

B=\(\frac{2011}{2012}+\frac{2012}{2013}\left(2\right)\)

Từ (1) và (2) suy ra A<B

Bình luận (0)
NT
24 tháng 3 2019 lúc 18:34

Đầu tiên:

Ta có:

B=\(\frac{2011}{2012+2013}\)+ \(\frac{2012}{2012+2013}\) = \(\frac{2011+2012}{2012+2013}\)

Vì:

\(\frac{2011}{2012+2013}\)< \(\frac{2011}{2012}\); \(\frac{2012}{2012+2013}\)< \(\frac{2012}{2013}\)

\(\Rightarrow\)\(\frac{2011+2012}{2012+2013}\)< \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)

Mà \(\frac{2011+2012}{2012+2013}\)= B; \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)

Vậy B>A

Bình luận (1)

Các câu hỏi tương tự
LN
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
VD
Xem chi tiết
NH
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
VN
Xem chi tiết