Violympic toán 6

H24

\(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right).x=\dfrac{2012}{1}+\dfrac{2011}{2}+...\dfrac{1}{2012}\)

NT
29 tháng 6 2022 lúc 8:13

\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\cdot x=\left(1+\dfrac{2011}{2}\right)+\left(1+\dfrac{2010}{3}\right)+...+\left(\dfrac{1}{2012}+1\right)+1\)

\(\Leftrightarrow x\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2013}\)

=>x=2013

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
TL
Xem chi tiết
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
NT
Xem chi tiết
MK
Xem chi tiết
MK
Xem chi tiết