Violympic toán 6

NN

So sánh:

A = \(\frac{2011^{2012}+1}{2011^{2013}+1}\)với B = \(\frac{2011^{2013}+1}{2011^{2014}+1}\)

NT
8 tháng 1 2017 lúc 17:24

Sửa lại:

Ta có:

\(2011A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\) nên 2011A > 2011 B

Từ đó A > B

Vậy A > B

Bình luận (0)
NT
8 tháng 1 2017 lúc 15:29

Có:

\(2009A=\frac{2011^{2013}+2011}{2011^{2013}+1}=1+\frac{2010}{2011^{2013}+1}\)

\(2011B=\frac{2011^{2014}+2011}{2011^{2014}+1}=1+\frac{2010}{2011^{2014}+1}\)

\(1+\frac{2010}{2011^{2013}+1}>1+\frac{2010}{2011^{2014}+1}\)

\(\Rightarrow2009A>2009B\)

\(\Rightarrow A>B\)

Vậy A > B

Bình luận (4)

Các câu hỏi tương tự
LT
Xem chi tiết
LN
Xem chi tiết
VD
Xem chi tiết
NS
Xem chi tiết
VN
Xem chi tiết
TL
Xem chi tiết
TK
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết