Violympic toán 9

MA

So sánh A với 1

\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

DD
13 tháng 7 2018 lúc 15:44

Ta có :

\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+........+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\) \(=1-\dfrac{1}{\sqrt{100}}< 1\)

Vậy \(A< 1\)

Bình luận (0)

Các câu hỏi tương tự
QT
Xem chi tiết
DH
Xem chi tiết
AP
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
DD
Xem chi tiết
PT
Xem chi tiết
NS
Xem chi tiết