Ta có: \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\)
\(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
Vì \(\frac{16}{17^{19}+1}>\frac{16}{17^{18}+1}\Rightarrow1+\frac{16}{17^{19}+1}>1+\frac{16}{17^{18}+1}\)
\(\Rightarrow17A>17B\)
\(\Rightarrow A>B\)
Vậy A > B
\(A=\dfrac{17^{18}+1}{17^{19}+1}=\dfrac{17^{18}+1}{17\left(17^{18}+1\right)}=\dfrac{1}{17}\)
\(B=\dfrac{17^{17}+1}{17^{18}+1}=\dfrac{17^{17}+1}{17\left(17^{17}+1\right)}=\dfrac{1}{17}\)
Vậy \(A=B\left(=\dfrac{1}{17}\right)\).