Đại số lớp 6

KQ

@Bastkoo T k giữ đề hình nên xem đề số ( câu cuối nhs , mấy câu trên dễ lắm ! )

Câu 5 : ( 1đ )

So sánh :

\(A=\dfrac{2017^{17}+1}{2017^{16}+1}\)\(B=\dfrac{2017^{18}+1}{2017^{17}+1}\)

LV
7 tháng 4 2017 lúc 20:30

_ Dạ đừng ai tk e vỳ cái nk trên kia là của e , e đăng cho đứa pn thoy _

Bài giải

\(A=\dfrac{2017^{17}+1}{2017^{16}+1}=\dfrac{2017^{17}+2017-2016}{2017^{16}+1}=\dfrac{\left(2017.2017^{16}\right)+\left(2017.1\right)-2016}{2017^{16}+1}=\dfrac{2017.\left(2017^{16}+1\right)}{\left(2017^{16}+1\right)}=\dfrac{2017.2017^{16}+1}{2017^{16}+1}-\dfrac{2016}{2017^{16}+1}=2017-\dfrac{2016}{2017^{16}+1}\)

\(B=\dfrac{2017^{18}+1}{2017^{17}+1}=\dfrac{2017^{18}+2017-2016}{2017^{17}+1}=\dfrac{\left(2017.2017^{17}+2017.1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)-2016}{2017^{17}+1}=\dfrac{2017.\left(2017^{17}+1\right)}{2017^{17}+1}-\dfrac{2016}{2017^{17}+1}=2017-\dfrac{2016}{2017^{17}+1}\)

\(\dfrac{2016}{2017^{16}+1}>\dfrac{2016}{2017^{17}+1}\)

\(\Rightarrow2017-\dfrac{2016}{2017^{16}+1}< 2017-\dfrac{2016}{2017^{17}+1}\)

\(\Rightarrow A< B\)

Bình luận (0)
LF
7 tháng 4 2017 lúc 20:32

nhân với 1/2017 vào A và B rút gọn r` so sánh. Do ko nhờ t làm t gợi ý thôi

Bình luận (1)

Các câu hỏi tương tự
TV
Xem chi tiết
KH
Xem chi tiết
VA
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
NQ
Xem chi tiết
PH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết