Đồ thị hàm số \(y=\dfrac{2x}{x^2+1}\) có những đường tiệm cận nào?
A. x=0 và y=2
B. x=0
C. y=0
D. x=2 và y=0
Đồ thị của hàm số nào dưới đây có tiệm cận đứng?
A. \(y=\dfrac{1}{\sqrt{x}}\)
B. \(y=\dfrac{1}{x^2+x+1}\)
C. \(y=\dfrac{1}{x^4+1}\)
D. \(y=\dfrac{1}{x^2+1}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
\(y=\dfrac{x+2}{x-3}\)
b) Chứng minh rằng giao điểm I của hai tiệm cận của (C) là tâm đối xứng của (C)
c) Tìm điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ M đến tiệm cận ngang
Cho hàm số :
\(y=\dfrac{\left(a-1\right)x^3}{3}+ax^2+\left(3a-2\right)x\)
a) Xác định a để hàm số luôn luôn đồng biến
b) Xác định a để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với \(a=\dfrac{3}{2}\)
Từ đó suy ra đồ thị của hàm số :
\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\)
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=mx-m+1\) cắt đồ thị của hàm số \(y=x^3-3x^2+x+2\) tại 3 điểm A, B, C phân biệt sao cho AB=BC
A. \(m\in\left(-\infty;0\right)\cup[4;+\infty)\)
B. \(m\in R\)
C. \(m\in\left(-\dfrac{5}{4};+\infty\right)\)
D. \(m\in\left(-2;+\infty\right)\)
Cho hàm số :
\(y=-x^4-x^2+6\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Câu 1 : Tìm điều kiện m để hàm số y = \(\frac{1}{3}x^3+3x^2+mx-2\) có 2 điểm cực trị
A. m \(\ge\) 9 B. m \(\le\) 9 C. m > 9 D. m < 9
Câu 2 : Tìm điểm cực tiểu của hàm số y = \(-x^3+3x^2+9x\)
A. -5 B. 3 C. -1 D. 27
Câu 3 : Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = \(-x^3+3x^2\)
A. \(2\sqrt{5}\) B. 6 C. 2 D. 8
Câu 4 : Đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = \(x^3-12x+4\) có phương trình là :
A. y = 8x - 4 B. y = 2x - 1
C. y = -8x + 4 D. y = -2x + 1
Câu 5 : Gọi A, B là 2 điểm cực trị của đồ thị hàm số y = \(-2x^3+3x^2-2\) . Tính diện tích tam giác OAB
A. 2 B. 1 C. 3 D. 3/2
Câu 6 : Biết m = m0 thì giá trị cực đại của hàm số y = x3 - 3x + m -4 bằng 5 . Khoảng nào sau đây chứa m0 ?
A. (0;2) B. (2;4) C. (4;6) D. (6;8)
Cho hàm số :
\(y=\dfrac{3\left(x+1\right)}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b) Viết phương trình các đường thẳng đi qua \(O\left(0;0\right)\) và tiếp xúc với (C)
c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên
Cho hàm số :
\(y=f\left(x\right)=x^4-2mx^2+m^3-m^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1
b) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt
Cho hai đồ thị hàm số là \(y=x^3+\left(\sqrt{2}+1\right)x^2-\left(\sqrt{2}-1\right)x+1\)và \(y=-\left(m+1\right)x^2+2x+m\). Tính \(m\) là số thực sao cho hai đồ thị trên tiếp xúc tại duy nhất 1 điểm.