Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

LH

\(sin^2x+sinx.cos4x+cos^24x=\frac{3}{4}\)

NL
27 tháng 8 2020 lúc 23:00

\(\Leftrightarrow sin^2x+sinx.cos4x+\frac{1}{4}cos^24x=\frac{3}{4}\left(1-cos^24x\right)\)

\(\Leftrightarrow\left(sinx+\frac{1}{2}cos4x\right)^2=\frac{3}{4}sin^24x\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\frac{1}{2}cos4x=\frac{\sqrt{3}}{2}sin4x\\sinx+\frac{1}{2}cos4x=-\frac{\sqrt{3}}{2}sin4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x\\-sinx=\frac{\sqrt{3}}{2}sin4x+\frac{1}{2}cos4x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=sin\left(4x-\frac{\pi}{6}\right)\\sin\left(-x\right)=sin\left(4x+\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow...\) (dạng cơ bản \(sinx=sina\) bạn tự giải nốt)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
ND
Xem chi tiết
QN
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết