Chương I - Căn bậc hai. Căn bậc ba

H24

Rút gọn:

P = \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{1-x}\right).\left(\dfrac{2}{\sqrt{x}}-\dfrac{2}{x}\right)\)

AT
19 tháng 7 2021 lúc 9:48

\(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{1-x}\right)\left(\dfrac{2}{\sqrt{x}}-\dfrac{2}{x}\right)\left(x>0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{2\sqrt{x}-2}{x}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2+2\sqrt{x}\left(\sqrt{x}+1\right)+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{2\left(\sqrt{x}-1\right)}{x}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{2\left(\sqrt{x}-1\right)}{x}=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{2\left(\sqrt{x}-1\right)}{x}\)

\(=\dfrac{6}{\sqrt{x}}\)

Bình luận (0)
NT
19 tháng 7 2021 lúc 12:18

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{1-x}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{2}{x}\right)\)

\(=\dfrac{x-2\sqrt{x}+1+2x+2\sqrt{x}+3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{2\sqrt{x}-2}{x}\)

\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{2\sqrt{x}-2}{x}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)\cdot2\cdot\left(\sqrt{x}-1\right)}{x\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{6}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
QE
Xem chi tiết
H24
Xem chi tiết
QE
Xem chi tiết
AQ
Xem chi tiết