Violympic toán 8

BB

Rút gọn: \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\), biết rằng: x+y+z=0

NL
17 tháng 12 2020 lúc 2:46

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)

\(P=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}=\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
TB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BT
Xem chi tiết
BC
Xem chi tiết
NK
Xem chi tiết
MA
Xem chi tiết
LH
Xem chi tiết
MM
Xem chi tiết