Violympic toán 8

MA

Tính

\(\dfrac{x^2}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^2}{\left(y-z\right)\left(y-x\right)}+\dfrac{z^2}{\left(z-x\right)\left(z-y\right)}\)

AH
18 tháng 12 2017 lúc 11:19

Lời giải:

Đặt biểu thức cần tính là A

Ta có:

\(A=\frac{x^2}{(x-y)(x-z)}+\frac{y^2}{(y-z)(y-x)}+\frac{z^2}{(z-x)(z-y)}\)

\(A=\frac{-x^2}{(x-y)(z-x)}+\frac{-y^2}{(y-z)(x-y)}+\frac{-z^2}{(z-x)(y-z)}\)

\(A=\frac{-x^2(y-z)+(-y^2)(z-x)+(-z)^2(x-y)}{(x-y)(y-z)(z-x)}\)

\(\text{ tử số}=x^2(z-y)+y^2(x-z)+z^2(y-x)\)

\(=x^2(z-y)-y^2[(z-y)+(y-x)]+z^2(y-x)\)

\(=(z-y)(x^2-y^2)+(y-x)(z^2-y^2)\)

\(=(z-y)(x-y)(x+y)-(x-y)(z-y)(z+y)\)

\(=(x-y)(z-y)(x+y-z-y)=(x-y)(z-y)(x-z)=(x-y)(y-z)(z-x)\)

Do đó: \(A=\frac{(x-y)(y-z)(z-x)}{(x-y)(y-z)(z-x)}=1\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
BC
Xem chi tiết
BT
Xem chi tiết
LC
Xem chi tiết
WL
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết