Violympic toán 8

TT

rút gọn các phân thức

a) \(\frac{x^2-16}{4x-x^2}\left(x\ne0,x\ne4\right)\) d) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)

b) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}\left(x\ne y\right)\) c) \(\frac{\left(x+y\right)^2-z^2}{x+y+z}\left(x+y+z\ne0\right)\)

e)\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}\)

AH
22 tháng 2 2020 lúc 22:26

Lời giải:

a) \(\frac{x^2-16}{4x-x^2}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

c)

\(\frac{(x+y)^2-z^2}{x+y+z}=\frac{(x+y-z)(x+y+z)}{x+y+z}=x+y-z\)

d)

Biểu thức không rút gọn được

e)

\(\frac{a^3+b^3+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b)^3-3ab(a+b)+c^3}{a^2+b^2+c^2-ab-bc-ac}=\frac{(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ac-bc+2ab)-3ab(a+b+c)+3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+3abc}{a^2+b^2+c^2-ab-bc-ac}=a+b+c+\frac{3abc}{a^2+b^2+c^2-ab-bc-ac}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LD
Xem chi tiết
BM
Xem chi tiết
MN
Xem chi tiết
TT
Xem chi tiết
KT
Xem chi tiết
MS
Xem chi tiết
LD
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết