Ôn tập: Phân thức đại số

DT

Rút gọn các biểu thức:

a) (x - \(\dfrac{1}{1-x}\)) : \(\dfrac{x^2-x+1}{x^2-2x+1}\)

b) (1 + \(\dfrac{x}{y}\) + \(\dfrac{x^2}{y^2}\))(1 - \(\dfrac{x}{y}\))\(\dfrac{y^2}{x^3-y^3}\)

NT
3 tháng 1 2021 lúc 10:52

a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)

\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)

\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)

\(=x-1\)

b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)

\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{-1}{y}\)

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NP
Xem chi tiết
QN
Xem chi tiết
DH
Xem chi tiết
LA
Xem chi tiết
QN
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết