Violympic toán 9

AD

rút gọn biểu thức sau A=\(\dfrac{x+12}{x-4}\)+\(\dfrac{1 }{\sqrt{x}+2}\)-\(\dfrac{4}{\sqrt{x}-2}\)(x≥0,x≠4)

NT
22 tháng 10 2023 lúc 21:44

\(A=\dfrac{x+12}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{4}{\sqrt{x}-2}\)

\(=\dfrac{x+12+\sqrt{x}-2-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}+10-4\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

Bình luận (2)

Các câu hỏi tương tự
KG
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
H2
Xem chi tiết
KG
Xem chi tiết
TN
Xem chi tiết
KG
Xem chi tiết
HH
Xem chi tiết
TD
Xem chi tiết