a,Ta có: \(\sqrt{3a}.\sqrt{27a}-5a=\sqrt{3.3^3.a^2}-5a=\left|3^2a\right|-5a=9a-5a=4a\)
b,\(\left(2-a\right)^2-\sqrt{0,3.30a^2}=4-4a+a^2-\left|3a\right|\)
\(\Rightarrow\left[{}\begin{matrix}=a^2-7a+4\\=a^2-a+4\end{matrix}\right.\)
a,Ta có: \(\sqrt{3a}.\sqrt{27a}-5a=\sqrt{3.3^3.a^2}-5a=\left|3^2a\right|-5a=9a-5a=4a\)
b,\(\left(2-a\right)^2-\sqrt{0,3.30a^2}=4-4a+a^2-\left|3a\right|\)
\(\Rightarrow\left[{}\begin{matrix}=a^2-7a+4\\=a^2-a+4\end{matrix}\right.\)
Rút gọn:
a.\(\sqrt{\dfrac{3a}{2}}.\sqrt{\dfrac{2a}{75}}\left(a\ge0\right)\)
b.\(\sqrt{5a}.\sqrt{\dfrac{2a}{a}}\left(a>0\right)\)
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
Rút gọn:
\(A=\sqrt{\left(a-3\right)^2}-3a\) với a < 3
\(B=4a+3-\sqrt{\left(2a-1\right)^2}\) với a > 1/2
\(C=\dfrac{4}{a^2-4}\sqrt{\left(a-2\right)^2}\) với a < 2
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{a^2+6a+9}{16}}\) với a < -3
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
Rút gọn các biểu thức
M = \(\sqrt{\left(3a-1\right)^2}+2a-3\) với a \(\ge\dfrac{1}{3}\)
N = \(\sqrt{\left(4-a\right)^2}-a+5\) với a > 4
I = \(\sqrt{\left(3-2a\right)^2}+2-7\) với a < \(\dfrac{3}{2}\)
K = \(\dfrac{a^2-9}{4}\sqrt{\dfrac{4}{\left(a-2\right)^2}}\) với a < 3
Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\), \(x\ge0,x\ne1\)
a) Rút gọn biểu thức A.
b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)
c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.
Rút gọn:
a,\(\sqrt{4\left(a-3\right)^2}với\) \(a\ge3\)
\(b,\sqrt{9\left(b-2\right)^2}với\) \(b< 2\)
\(c,\sqrt{27.48\left(1-a\right)^2}với\) \(a>1\)
\(d,\sqrt{5a}.\sqrt{45a}-3a\) \(với\) \(a\ge0\)
\(e,\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}với\) \(x>0\)
Rút gọn:
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\)