\(x^4+2017x^2+2016x+2017\)
\(=x^4+2017x^2-x+2017x+2017\)
\(=\left(x^4-x\right)+\left(2017x^2+2017x+2017\right)\)
\(=x.\left(x^3-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left(x^3-x^2+x^2-x+x-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left[x^2.\left(x-1\right)+x.\left(x-1\right)+\left(x-1\right)\right]+2017.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)+\left(x^2+x+1\right)+2017.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left[x\left(x-1\right)+2017\right]\)
\(=\left(x^2+x+1\right).\left(x^2-x+2017\right)\)
Chúc bạn học tốt!!!