Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Phân tích đa thức thành nhân tử ( PP hệ số bất định ):
\(\left(x^2+x-2\right)^2+\left(x-2\right)^2\)
Đặt biến phụ : \(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)-18\)
\(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
Phân tích đa thức sau thành nhân tử:
a) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
b) \(\left(4x+1\right).\left(12x-1\right).\left(3x+2\right).\left(x+1\right)-4\)
c) \(\left(x^2+2x\right)^2+9x^2+18x+20\)
giải pt sau
a)\(\left(x-2\right)\left(x-3\right)+2x=\left(x-2\right)^2-2\)
b) \(\left(x-1\right)^2+3x\left(x-1\right)+7=\left(2x-1\right)^2+5\left(x-3\right)\)
c)\(5\left(x^1-2x-1\right)+2\left(3x-2\right)=5\left(x+1\right)^2\)
d)\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
Giải phương trình
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Thu gọn đa thức
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)